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The Importance of Forests 
in Bumble Bee Biology and 
Conservation

JOHN M. MOLA , JEREMY HEMBERGER, JADE KOCHANSKI, LEIF L. RICHARDSON, AND IAN S. PEARSE

Declines of many bumble bee species have raised concerns because of their importance as pollinators and potential harbingers of declines among 
other insect taxa. At present, bumble bee conservation is predominantly focused on midsummer flower restoration in open habitats. However, 
a growing body of evidence suggests that forests may play an important role in bumble bee life history. Compared with open habitats, forests 
and woody edges provide food resources during phenologically distinct periods, are often preferred nesting and overwintering habitats, and 
can offer favorable abiotic conditions in a changing climate. Future research efforts are needed in order to anticipate how ongoing changes in 
forests, such as overbrowsing by deer, plant invasions, and shifting canopy demographics, affect the suitability of these habitats for bumble bees. 
Forested habitats are increasingly appreciated in the life cycles of many bumble bees, and they deserve greater attention from those who wish to 
understand bumble bee populations and aid in their conservation.
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Bumble bee conservation and management has    
 garnered considerable attention because of bees’ role as 

pollinators of economically and ecologically important crops 
and wild plants. The precipitous decline of several bumble 
bee species has been documented in the twenty-first century, 
raising alarm about the viability of these charismatic species 
(Cameron and Sadd 2020). Because of this, bumble bees 
have become a focal taxon for understanding and preventing 
the loss of insect biodiversity more broadly (Goulson and 
Nicholls 2016, Wagner et  al. 2021). Threats to bumble bee 
populations include habitat loss, novel pathogen exposure, 
climate change, and pressures from intensive agriculture, 
such as pesticide applications (Cameron and Sadd 2020). 
One of the primary tasks for bumble bee conservation is 
developing a greater understanding of the habitat require-
ments of species throughout their life cycle and incorporat-
ing that knowledge into restoration and management plans.

Successful bumble bee conservation relies on an under-
standing of the parts of landscapes used throughout bees’ 
life cycles (figure 1). Most bumble bees have an annual social 
life cycle, with queens emerging in early spring as solitary 
individuals. These lone queens seek nesting sites and then 
begin foraging for the initial pollen and nectar resources 
needed to establish their nests. As colonies grow by pro-
ducing successive cohorts of workers across the growing 
season, they demand more resources. Successful colonies 

begin producing males and gynes late in the growing sea-
son. Finally, colonies senesce, with only gynes seeking sites 
to establish hibernacula and overwinter. Because bumble 
bees have relatively long flight seasons, they may make use 
of different land cover types that contrast or complement 
in their value over time by providing resources at different 
points in the season (Mandelik et al. 2012) or vary in their 
abiotic conditions. Forests can provide seasonally distinct 
floral resources from other habitats (e.g., Mola et al. 2021) 
and may be primary sites of nesting and overwintering 
(reviewed in Liczner and Colla 2019). As such, forests may 
serve as complementary habitats, supporting bumble bees in 
ways that are less readily apparent than midsummer foraging 
in open habitats but nonetheless critical.

Research on bumble bees has been primarily focused on 
their midsummer stage, when workers reach peak abun-
dance and are readily found on flowers (Goulson 2009). 
Understandably, this focus arises because that is when the 
most individuals can be observed as colony sizes are at their 
peak and numerous workers can be found foraging. These 
types of studies have revealed important insights into the 
habitat needs and stressors of bumble bees, such as the rela-
tionship between landscape context and bumble bee diver-
sity (e.g., Hines and Hendrix 2005) or patterns of disease 
prevalence (e.g., McNeil et  al. 2020). However, this focus 
commonly overlooks other key points in the bumble bee 
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life cycle—namely, the solitary phase of life for wild queens 
and males, early season foraging, nesting, mating, and over-
wintering. Despite their lower numerical abundance, recent 
studies have shown that these phases of bumble bee life his-
tory are especially important in determining the trajectory 
of their populations (Crone and Williams 2016, Carvell et al. 
2017). Because forests in many regions contrast with open 
habitats in terms of their flowering phenology, structural 
features, and abiotic conditions, these habitats may be par-
ticularly relevant to the understudied portions of the bumble 
bee life cycle. When considering the bumble bee year more 
broadly to include early floral resources or nesting and over-
wintering habitat, the role of forests, forest edges, and other 
woody habitats becomes more central in our understanding 
of bumble bee biology.

Forests can vary greatly along axes of canopy openness, 
mesic versus xeric conditions, successional stage, and more. 
In some instances, forests are unsuitable habitats for bumble 
bees (e.g., unbroken swathes of closed canopy evergreen for-
est), but in many landscapes, a variety of forest types such as 
open canopy mixed conifer forests (Mola et al. 2020a), oak 
woodlands (Wray et al. 2014), aspen groves (Gonzalez et al. 
2013), early successional (Taki et  al. 2013), or old growth 
forests (Proesmans et al. 2019) may all play a role in bumble 
bee ecology for all or part of their life cycle. Readers should 
interpret the term forest broadly to include a range of vari-
ability and not all types are going to function in the same 
way as bee habitat (e.g., some forest types may be quality 
nesting, overwintering, and foraging habitat, whereas others 
may only be suitable for overwintering and offer few floral 
resources). For the purposes of this review, we define forests 

relatively broadly to include a variety of landcovers contain-
ing woody plant species. We consider work focusing on for-
est interiors and edges, riparian corridors, open and closed 
canopy alike. We hope our discussion will allow readers to 
combine knowledge from their forest type or woody habi-
tat of interest to bumble bee life history to make informed 
ecological inferences.

In this article, we consider the role of forests in bumble 
bee life cycles and its importance for conservation plan-
ning. First, we review evidence from landscape-level studies 
about the connection between forests and the abundance 
of bumble bee species. We relate these trends to the life 
history of bumble bees to develop general expectations for 
the relationship between forests and bumble bees. Next, we 
consider threats to forests that may limit their suitability as 
bumble bee habitat and explore how forests can be managed 
to support bumble bees. We contextualize our discussion by 
highlighting an endangered bumble bee species, the rusty-
patched bumble bee (Bombus affinis; box 1). Because there 
are still many uncertainties as to the role of forests in bumble 
bee conservation, we conclude with a discussion of major 
research themes relating to bumble bees and forests that are 
likely to inform conservation efforts and improve our under-
standing of the basic biology of bumble bees.

How bumble bees use forests
The overwhelming majority of bumble bee observations 
occur in open areas, so why argue for the importance of 
forests for these species? Bumble bees use forested habitat in 
different ways throughout their life cycle (figure 1). Casual 
observations of bumble bees and many bumble bee monitor-
ing programs do not observe these bumble bees in forests 
because they concentrate primarily on summer bumble 
bee communities, largely composed of foraging workers. 
However, the bumble bee life cycle is complex (figure 1), 
and evidence points to an outsized importance of some of 
the more cryptic life stages as drivers of bumble bee demog-
raphy (Carvell et al. 2017). These life stages often occur in 
forests.

Forage. Bumble bees have a long foraging season, often span-
ning the flower production of many species or habitats over 
several months (Williams and Osborne 2009, Timberlake 
et  al. 2019). Therefore, populations are sensitive not only 
to the total amount of resources but also their availabil-
ity through time (Carvell et  al. 2017, Malfi et  al. 2019, 
Hemberger et al. 2020). In most species, hibernating queens 
emerge in early spring, when the earliest flowers emerge 
(e.g., willows and forest understory herbs), and complete 
colony reproduction in late summer or early fall (figure 1). 
Colonies require a continuous supply of floral resources 
because they do not store large amounts of pollen or nectar 
(Timberlake et al. 2019). The availability of floral resources 
in the early season, when queens are establishing colonies 
or the first workers begin foraging, is especially important 
for colony success (Carvell et al. 2017, Watrous et al. 2019, 

Figure 1. Bumble bee life cycle with emphasis on the role of 
forests as sites of foraging, nesting, and overwintering. This 
example is based on a temperate deciduous forest; forests 
can provide critical sources of early season forage within 
tree canopies or via forest floor ephemerals. Early summer 
colonies begin developing in a variety of substrates such 
as underground cavities or hollow logs. Although many 
types of forests decline in their importance as foraging 
sites in the summer, forests again become common sites of 
overwintering queens in the fall through winter.
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Woodard et  al. 2019). When a resource gap occurs at the 
establishment phase colonies rarely recover from it (Malfi 
et al. 2019).

Because forest herbs and trees often flower before plants in 
other habitats, they may be especially important to queens, 
colony establishment, and forest specialist species. In many 
areas, the first flowering resources are found within forest 
canopies or understories (Inari et  al. 2012, Bertrand et  al. 
2019, Proesmans et al. 2019), and some of the last are in for-
est shrubs, edges, or in canopy gaps (Walters and Stiles 1996, 
Sakata and Yamasaki 2015). In Illinois, in the United States, 
the peak estimated flowering date of plants used by bumble 
bees is 81 days earlier in forests than in grasslands or wet-
lands (Mola et al. 2021). In these regions, records of spring 
bumble bee queens overlap most strongly with flowering in 
forests (Mola et al. 2021). In Japan, bumble bee population 
cycles are driven in large part by the availability of spring-
time resources in forest canopies the previous season (Inari 
et al. 2012). In Europe, tree pollens represent roughly 80% of 
early season pollen loads in Bombus terrestris (Kämper et al. 
2016, Bertrand et al. 2019), suggesting a critical role of for-
ests in the early foraging of this generalist species. In eastern 
North America, where pathogens are thought to be respon-
sible for the decline of some bumble bee species, Bombus 
impatiens in habitats with higher spring floral abundance 
(predominantly forests), had lower pathogen loads (McNeil 
et al. 2020). As well, some species such as Bombus vagans, 
Bombus. ardens, or Bombus terricola complete almost their 
entire colony life cycles within forests, specializing on plants 
within the canopy and understory.

Within the world’s deciduous forests, resource abun-
dance can be high early in the spring, when canopy trees 
and shrubs flower and leaf-out has not yet shaded spring 
ephemerals. However, within open canopy forests, flowering 
phenology may have a different distribution. For example, in 
the open canopy conifer forests of the western United States, 
species such as mountain pennyroyal (Monardella odoratis-
sima) and waterleaf phacelia (Phacelia hydrophylloides) can 
flower well into the bumble bee foraging season (Mola et al. 
2020a). Some temperate deciduous forests also have late-
season herbaceous flowers used by bumble bees (e.g., Kato 
et al. 1990), but these flowers may be less common than in 
decades past because of degradation by deer browse and 
other factors (Sakata and Yamasaki 2015). Considering both 
ends of the flowering season is important for bumble bees as 
the abundance of late-flowering resources is associated with 
elevated gyne and male production by colonies (Rundlöf 
et al. 2014) and may be important in explaining interannual 
variability in colony abundance (Timberlake et  al. 2020). 
Given these examples, it seems likely that overall woody 
habitats provide resources that are complementary or at least 
supplemental to those of adjacent open habitats.

In addition to the total availability of resources, a pref-
erence for different plant species because of nutritional 
composition, resource return rate, or other factors is worth 
considering. For example, bumble bees selectively forage 

to balance dietary protein:lipid ratios (Vaudo et  al. 2016, 
Woodard and Jha 2017). Rivers-Moore and colleagues 
(2020) documented a preference among bees, including 
bumble bees, for certain plants within woody habitats over 
those available in open habitats although exactly why these 
pollens were preferred was not identified, but it is possible 
these patterns are driven by phylogenetically conserved 
foraging preferences (Wood et al. 2021). At present, it is not 
clear if colonies perform better when accessing resources in 
woody environments over those in open habitats. One study 
showed that B. impatiens colonies experimentally placed in 
forest, open, and forest-edge habitats achieved similar nutri-
ent ratios, but the colonies located within forests did not 
grow as rapidly (Vaudo et  al. 2018). By contrast, Pugesek 
and Crone (2021) found that wild B. impatiens colonies 
monitored in forest patches had higher gyne production 
than those found in meadows, but these forest fragments 
were relatively small. Long travel distances limit productiv-
ity and reproductive output (Cresswell et al. 2000), but given 
the permeability of forests by foragers (Kreyer et  al. 2004, 
Mola et  al. 2020a), these limitations are likely due to total 
travel distance and resource availability rather than connec-
tivity (Herrmann et al. 2017). Understanding how forested 
and open habitats complement bumble bee diets beyond 
raw abundance or phenological complementarity is likely of 
great importance for informing habitat management plans 
targeting pollinators. However, more work is needed to 
understand habitat differences in resource quality and their 
consequences for bumble bees.

Nesting and overwintering. Most bumble bee conservation 
efforts are focused on increasing available forage in the form 
of floral resources (Dicks et al. 2015, Requier and Leonhardt 
2020); however, this is only one component of bumble bee 
habitat. The degree to which overwintering and nesting 
resources limit bumble bee populations is an ongoing area 
of debate (Roulston and Goodell 2011, Liczner and Colla 
2020), but the provision of at least some habitat within the 
landscape is a necessity. Unlike foraging habitat, forests are 
commonly recognized as sites of nesting and overwintering 
within management documents and restoration initiatives 
(e.g., the draft recovery plan for Bombus affinis; USFWS 
2019).

Bumble bees nest both below and above ground. Bumble 
bee nests, although they are cryptic, may be found through 
observations of spring nest-searching queens, careful obser-
vation of workers returning from foraging bouts, scent-
detecting dogs, and radiotelemetry (Svensson et  al. 2000, 
Mola and Williams 2019, Liczner et al. 2021). Preferred and 
actual nesting locations can be inferred indirectly on the 
basis of the nest searching behaviors of bumble bee queens 
and genetic mark–recapture method. On the basis of the 
available evidence, forests seem to be favorable and com-
mon nesting habitats for many species (Lanterman et  al. 
2019, Liczner and Colla 2019). In the US, nest searching 
bumble bee queen abundance was positively associated 
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with the amount of forest within 1 kilometer of study sites 
(Lanterman et  al. 2019). Likewise, at multiple locations, 
bumble bee colony density was associated with a greater 
amount of forest or woodland in the landscape (Jha and 
Kremen 2013, Pfeiffer et al. 2019), with the authors suggest-
ing these trends are due to the availability of nesting habitat. 
In Europe, nest searching bumble bee queens are often found 
within wooded areas or alongside edge habitats (Svensson 
et al. 2000, Kells and Goulson 2003). A community science 
project in the United Kingdom documented high nest densi-
ties along linear features such as hedgerows and forest edges 
but lower density in grassland and forest interiors (Osborne 
et al. 2008). However, this study did not correct for differ-
ences in detection rates between habitats that may be lower 
in forests (Pugesek and Crone 2021). It is worth noting that 
the taxonomic and geographic coverage of studies on nesting 
and nest seeking behaviors is currently somewhat limited. 
Studies conducted in Europe postagricultural intensification 
(Svensson et al. 2000, Kells and Goulson 2003) may overrep-
resent subgenera that are more associated with woodlands 
(e.g., Pyrobombus, Bombus sensu stricto), and surface nesting 
in open habitat is common for many species as well (Liczner 
and Colla 2019). Regardless, it appears that forests, forest 
edges, and the many microhabitats that they provide (Ouin 
et al. 2015) are common sites of nesting for many species.

These observations, both direct and indirect, suggest that 
bumble bee nesting sites are often located within forests. 
Do forests also increase the success of those nests? To date, 
the evidence for this is sparse and contrasting. Pugesek and 
Crone (2021) found that B. impatiens nests in similar densi-
ties in open habitat and forests but that the reproductive suc-
cess of colonies within forests was nearly three times higher. 
In contrast, in an experimental study of the rates of preda-
tion on artificially placed bumble bee nests, nests placed in 
forests experienced greater predation than those placed in 
open habitats (Roberts et al. 2020). More work is needed to 
understand the fitness consequences of bumble bee nests 
placed in forested and open habitats.

Direct quantification of overwintering is rare, although 
scattered records suggest that forests are the most common 
overwintering habitats for many bumble bees (Liczner and 
Colla 2019). Overwintering queens are commonly docu-
mented in shaded areas near trees (Sladen 1912, Plath 1934, 
Alford 1969). On the coast of California, Bombus vosnesen-
skii queens were found overwintering in well-composted 
duff layers beneath cypress trees but not in adjacent open 
habitats (Williams et al. 2019). It is possible that the sheltered 
environments under trees provide coverage from rain or 
buffer against poor environmental conditions. Alternatively, 
undisturbed litter layers may be less common in open habi-
tats, resulting in less frequent overwintering (Liczner and 
Colla 2019). Rotting logs and other woody debris may be 
important overwintering substrate (Frison 1926, Alford 
1969), but these microhabitats may be absent from early suc-
cession forests. Generally, much is still to be learned about 
the importance of different habitats to overwintering and the 

success of individuals overwintering in different substrates, 
but it is recognized that forests are important habitats for the 
overwintering of many species.

Abiotic effects
Forested environments have distinct abiotic conditions 
compared with open habitats such as grasslands and 
meadows. Bumble bee abundance can vary considerably 
from year to year, based in part on the direct and indirect 
impacts of annual climate conditions (Ogilvie et al. 2017), 
and forest microsites may buffer against this variation. At 
the same time, human use of forest differs considerably 
from that of open spaces that are more likely to experi-
ence impacts from agrochemicals (Bentrup et al. 2019). As 
such, it is useful to consider beyond the biotic effects of 
wooded habitats and consider the role that microclimates 
and physical attributes of forests may play in bumble bee 
biology and conservation.

Microclimates. The foraging of bees and other insects can be 
strongly influenced by weather conditions, predominantly 
air temperature, precipitation, and wind speed. Pollinator 
energetic costs are increased in high winds, resulting in 
reduced foraging efficiency and pollination success (Vicens 
and Bosch 2000, Brittain et  al. 2013). Forested areas can 
reduce wind speed in adjacent environments and moderate 
air temperatures in both natural and urban environments. 
Both factors may reduce the energetic costs of foraging 
for bees within or adjacent to forests (Papanikolaou et  al. 
2017). For example, air temperatures are warmer downwind 
of windbreaks (McNaughton 1988), potentially resulting 
in longer available windows of foraging. Although they do 
not test abiotic conditions directly, Gonzalez and colleagues 
(2013) suggested one possible explanation for their finding 
that bumble bees were more common in aspen groves than 
adjacent grasslands was improved microclimatic conditions 
under the tree canopy—namely, reduced temperatures in 
summer. Temperature differences between forested and 
open habitats should be considered not only for foraging, 
but also nesting and overwintering. Heat waves have been 
suggested as a stressor for bumble bee colonies (Rasmont 
and Iserbyt 2012). Nests within shaded forested areas may 
be better protected from these extreme temperature swings 
compared with open field habitats. Maintenance of exist-
ing forested areas or the planting of windbreaks within 
agricultural landscapes can assist in the delivery of pollina-
tion services by bumble bees and potentially buffer against 
warming temperatures and associated unfavorable foraging 
conditions.

Correlations between bumble bees and forest cover
Many landscape-scale studies have looked at the relationship 
between forest cover and bumble bee abundance or diversity. 
Generally, increased landscape complexity or heterogeneity 
is positively correlated with pollinator diversity and abun-
dance suggesting these landscapes offer more patches for 
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habitat specialists (Tscharntke et  al. 2012, Mallinger et  al. 
2016). Several studies demonstrate clear positive relation-
ships between forest cover and bumble bee abundance or 
diversity (Wray et al. 2014, Rivers-Moore et al. 2020, Sõber 
et  al. 2020), spring queen abundance (Lanterman et  al. 
2019), or estimated colony density from molecular analysis 
(Jha and Kremen 2013, Pfeiffer et  al. 2019). Negative rela-
tionships between bumble bee abundance and forest cover 
have also been reported (Winfree et  al. 2007, Mandelik 
et  al. 2012), as well as contrasting results among species 
(Richardson et al. 2019).

The variation in observed associations between bumble 
bee abundance and forest cover is likely driven by variation 
in the amount of forest cover considered in a study and the 
bumble bee species involved (figure 2), as well as methods 
differences in bumble bee surveys. A general model of 
bumble bee–forest associations might consider a continuum 
of forest density or fragmentation as a primary niche axis for 
bumble bees and acknowledge that different species might 
associate with species-specific optimal levels of forest den-
sity or fragmentation (figure 2).

Different bumble bee species have differing habitat 
optima along a forest gradient, resulting in landscapes 
with higher heterogeneity (i.e., intermediate levels of for-
est and open habitat) being most favorable for total spe-
cies richness (figure 2). Quantitative surveys support this 
notion, with some bumble bees more associated with forest 
habitats than others (Richardson et  al. 2019). In cases in 
which forests are very dense and few flowers are present 

within the habitat, negative relationships 
begin to arise (e.g., Loffland et al. 2017) 
with bumble bees only found in natural 
or artificial forest gaps (Kolosova et  al. 
2016, Moquet et  al. 2017). In contrast, 
the amount of forest and forest edge in 
the surrounding landscape can posi-
tively predict abundance (Wray et  al. 
2014, Banaszak and Twerd 2018, Rivers-
Moore et  al. 2020). Fragmentation of 
forests can favor generalist bumble 
bees associated more with open habi-
tats, resulting in an overall reduction 
in species diversity and the loss of for-
est specialists (Gómez-Martínez et  al. 
2020). Some species may have an affinity 
for forests and use woody habitats for the 
majority of their colony development, 
such as the aptly named tree bumble 
bee (Bombus hypnorum; Crowther et al. 
2014). Other species may only use for-
ested habitats seasonally. For example, 
in Japan, B. ardens is found in forests 
for most of its colony cycle but Bombus 
diversus visits forests only early in the 
season before switching to open habitat 
(Ushimaru et al. 2008, Inari et al. 2012).

In addition to variation among species, differences in 
survey methods can bias observed associations between 
bumble bees and forest habitats. First, because bumble bees 
may rely on forests the most early in their life cycle, surveys 
later in the season may affect the observed relationship 
between a bumble bee species and forest habitat (Proesmans 
et  al. 2019). Notably, even in examples in which a positive 
bumble bee–forest correlation is found, surveys were con-
ducted in summer when workers are present, well after the 
point in time when forests may be of most importance to 
bumble bees (Mola et al. 2021). Second, the scale of surveys 
may influence observed relationships. For example, Moquet 
and colleagues (2017) found positive relationships between 
bumble bee abundance and surrounding spruce forest cover, 
but argued the increased abundance was due to concentra-
tion effects of bumble bees on limited forage resources found 
only in gaps and not due to forest cover per se.

Of note is that a substantial portion of the studies docu-
menting foraging by bumble bees in forests demonstrate 
the use of plants within natural or artificial forest edges 
or ecotones, rather than deep within forests themselves 
(McKechnie et al. 2017, Sõber et al. 2020, Lee et al. 2021). 
It is unclear whether bumble bees prefer forest edges or 
whether this connection is caused by modern-day changes 
to forest structure. In high-quality old growth forests, there 
may be rich understory resources, but in many modern or 
degraded forests, there may not be sufficient solar radiation 
to sustain favorable foraging temperatures or herbaceous 
cover beyond the forest edge (Proesmans et al. 2019).

Figure 2. A hypothesized relationship between forest cover and the abundance 
of bumble bees varying in their association with forests. Some species, such as 
Bombus vagans, are strongly associated with forest throughout their range and 
are expected to be present in high abundance at more densely forest sites and 
then absent from open areas far from forests. Others show opposite patterns, 
being associated with open habitats, such as Bombus fervidus. Generalist 
species may be present across the continuum of forest types, but may reach 
peak abundance at intermediate levels of forest cover or have a more uniform 
distribution. Example species follow from the results of Richardson and 
colleagues (2019).
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In managing forests to support bumble bees, it may be 
important to consider how particular bumble bees use 
forests. For example, B. terrestris is invasive throughout 
Hokkaido, Japan, where it displaces native species in open 
or agricultural habitats but not in forested areas (Ishii et al. 
2008, Nukatsuka and Yokoyama 2010). In general, phenol-
ogy varies substantially among bumble bee species, and, at 
least in temperate habitats, bumble bee species that emerge 
earlier in spring are more likely to rely on floral resources 
in forests (Colla and Dumesh 2010, Mola et al. 2021), sug-
gesting that there may be predictable differences in how 
forest management may affect different bumble bee species. 
However, more work is needed to show the generality of 
a positive correlation between forest-affiliation and early 
phenology. Of final note in interpreting the correlations 
between bumble bees and forest cover is the need for care-
ful consideration of the problem of shifting baselines (Pauly 
1995, Collins et al. 2020). In contemporary landscapes, the 
large-scale elimination of grasslands (Samson and Knopf 

1994, Wesche et al. 2012), and therefore, open habitat associ-
ated species may have already occurred, potentially biasing 
modern surveys toward more forest associated species. As 
such, some caution is warranted in interpreting a general 
pattern of increased landscape-scale forest cover leading to 
increased bumble bee abundance and diversity. However, it 
seems fair to conclude that heterogenous landscapes com-
posed of a mix of forested and open landscapes are likely to 
support abundant and diverse bumble bee communities in 
most regions.

Threats to forests as bumble bee habitat
Forests throughout the world are changing rapidly. For 
example, forests are affected by changing land use, climate 
change, invasive species, and fires (Lindenmayer et al. 2012, 
McDowell et al. 2020). Many of these changes are likely to 
affect the important roles that forests play in the lives of 
bumble bees, sometimes positively and sometimes nega-
tively (table 1).

Table 1. Threats to forests and their potential impact on bumble bee populations.
Threat Hypothesized impact on bumble bees Key references

Fragmentation •	  Loss of forest habitat specialists, increase in generalist 
species

Ouin et al. 2015, Proesmans et al. 2019, Gómez-
Martínez et al. 2020

•	  Changes in edge microclimates affecting foraging, 
nesting, and overwintering conditions

Loss of old growth forests •	 Change in forest floor structure suitable for overwintering Varhola et al. 2010, Lindenmayer et al. 2012, 
Jackson et al. 2014, Proesmans et al. 2019

•	 Loss of understory herbs

•	 Loss of old trees, stumps, and nesting cavities

Overbrowsing by deer •	 Loss of bumble bee forage plants Shelton et al. 2014, Sakata and Yamasaki 2015, 
Nakahama et al. 2020

•	  Change in forest structure may affect suitability of nesting 
and overwintering, directionality unknown

Introduced earthworms •	  Changes to forest floor structure, moisture, and soil 
compaction may affect overwintering and nesting

Bohlen et al. 2004, Laushman et al. 2018

•	 Loss of bumble bee forage plants

Wild and prescribed fire •	  Varied impacts depending on forest type, presumed 
increases in floral abundance due to increased light 
levels and postfire bloom

Burkle et al. 2019, Carbone et al. 2019, Galbraith 
et al. 2019

•	  Potential mortality of queens and colonies during 
overwintering or nesting

•	 Loss of microclimate buffering if canopy severely reduced

Logging •	  Varied impacts depending on logging intensity, type of 
machinery used, seasonality, soil disturbance, etc., likely 
increases in forage and bee abundance, especially along 
edges

Pengelly and Cartar 2010, Jackson et al. 2014

•	  Potential long-term negative impact due to loss of 
microhabitat structure

Invasive plants •	  Loss of floral abundance although some invaders are 
suitable forage

McKinney and Goodell 2010, Hanula et al. 2016, 
Gibson et al. 2019

•	 Increased shade reduces foraging

Changing flowering 
phenology

•	 Phenological mismatch Burkle et al. 2013, Kudo and Cooper 2019

Pesticide concentration •	 Potential transfer to overwintering queens in soil Hladik et al. 2016, Bentrup et al. 2019

•	 Uptake into nectar and pollen

Note: The key references are not intended to be an exhaustive list. The italicized references are about the threat but do not directly study bees. 
See the main text for further details.
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A common change in forests that could threaten bum-
ble bees is the loss of understory flowers. For example, 
declines in floral resource availability in forests have been 
documented in Illinois, in the United States, driven in 
part by the loss of important spring flowering plants such 
as Geranium maculatum and Hydrophyllum virginianum 
(Burkle et al. 2013, Augspurger and Buck 2017, Mola et al. 
2021). A decline in understory flowers may be caused by 
overbrowsing by deer or cattle grazing, canopy crowding, 
plant invasions, and other factors such as earthworm intro-
ductions. Overbrowsing by deer can reduce the abundance 
of understory herbs, as has been documented widely across 
the eastern United States (Frerker et al. 2014, Shelton et al. 
2014) and Japan (Sakata and Yamasaki 2015). Although not 
as widely studied within woodlands, and seemingly with no 
studies focused on impacts on bees, cattle grazing can simi-
larly decrease the abundance of native perennial wildflowers 
and increase exotic plant invasion (Pettit et al. 1995, Mabry 
2002). Overbrowsing can reduce spring ephemeral availabil-
ity and autumn flowering plants critical for fat acquisition 
by gynes before overwintering (Sakata and Yamasaki 2015). 
Restoration efforts aimed at reducing deer browse may be 
successful. In a study in grasslands, Nakahama and col-
leagues (2020) found the installation of deer fencing resulted 
in increased floral abundance and increased bumble bee and 
butterfly abundance and diversity within fenced areas about 
3–8 years after installation. They caution, however, that 
other efforts to install deer fencing may be unsuccessful if 
the habitat has already been substantially degraded (Tamura 
2010, Okuda et  al. 2014). In those instances, deer fencing 
may need to be combined with additional efforts such as 
native plant seeding.

Encroachment from invasive shrubs can also reduce 
flower production within forests with downstream effects on 
pollinator populations (Miller and Gorchov 2004, McKinney 
and Goodell 2010, Hanula et al. 2016). The effects of invasive 
plants on pollinators can vary substantially according to the 
context of the invasion. Invasive plants may, at times, be 
the preferred floral resources of bumble bees (e.g., Gibson 
et al. 2019), but widespread invaders such as Chinese privet 
(Lingustrum sinense) and Amur honeysuckle (Lonicera 
maackii) can crowd forest understories and reduce total 
floral diversity or flowering duration even if the invader is a 
suitable food source itself (reviewed in Hanula et al. 2016). 
Experimental removal of invasive plants in these habitats 
can result in improved foraging conditions for bees and 
rapid recovery of bee communities (Hanula and Horn 2011). 
The net benefit of biomass removal on bumble bees may be 
highly context specific and requires careful consideration of 
the study system (Gibson et al. 2019).

Some human activities within forests such as limited log-
ging can have positive impacts on bumble bee forager abun-
dance by opening canopies and more closely approximating 
conditions within mature forests with well-established gap 
dynamics (Pengelly and Cartar 2010, Jackson et  al. 2014, 
Proesmans et al. 2019, Lee et al. 2021). However, these same 

activities may have negative effects on the availability of 
microhabitats for nesting and overwintering; because of this, 
the net impact of long-term changes in forest dynamics are 
unknown. These effects are yet to be tested but provide clear 
research pathways for understanding how changing forest 
dynamics and associated management activities will affect 
bumble bee populations over the next several decades.

The direct and indirect negative impacts of pesticides, 
fungicides, and herbicides on bees are well documented 
(Lundin et  al. 2015, McArt et  al. 2017, Motta et  al. 2018). 
Bees in agricultural landscapes may be exposed to pesti-
cides directly, and drift carries different pesticides different 
distances from the places where they are applied (Hladik 
et al. 2016). Pesticide residues may reach forests via surface 
or subsurface water movement, airborne drift, or volatility. 
Movement of herbicides via volatiles is worthy of further 
consideration, because injury to plants up to 250 meters 
from application sites has been documented (Soltani et  al. 
2020). These herbicides could injure floral resources within 
forests resulting in reduced foraging opportunity for bees 
(Bohnenblust et  al. 2016, Florencia et  al. 2017). Previous 
work has suggested that forests may mitigate drift by cap-
turing agrochemicals and reducing wind speeds (reviewed 
in Bentrup et  al. 2019). However, the benefits of forests 
trapping these compounds are only positive if the forest is 
seen as matrix and not as primary habitat itself. If, instead, 
forests are bumble bee habitat these effects may be negative 
as drift or damage may concentrate in these areas. Future 
work investigating how forest habitat quality for bumble bee 
foraging, nesting, and overwintering is affected by drift from 
croplands is needed to understand how pesticides affect 
forests as bumble bee habitat. Overwintering may be of 
particular importance, because queens may come in direct 
contact with residues within soils for extended periods of 
time, which has been shown to negatively affect solitary bee 
development (Anderson and Harmon-Threatt 2019).

Several other factors change conditions within forests 
substantially and may affect bumble bee populations, but 
evidence is currently lacking to address this. Introduced 
European earthworms in hardwood forests of the Upper 
Midwest, in the United States, have resulted in changing 
soil and leaf litter conditions with negative consequences for 
understory forbs (Bohlen et al. 2004, Laushman et al. 2018) 
and possibly overwintering substrates. Besides direct losses 
of floral richness or abundance, shifting flowering phenol-
ogy may also threaten resource availability, with advances in 
spring bloom documented widely (Kudo and Cooper 2019, 
Augspurger and Zaya 2020). Changing fire regimes, either 
reduced burning because of mesophication (Nowacki and 
Abrams 2008) or increased fire severity from climate warm-
ing and built-up fuel loads (Jolly et al. 2015), are also likely to 
affect bumble bee populations. Bumble bees often respond 
positively to fire in the short term, because of postfire bloom 
and increased canopy openness (Burkle et al. 2019, Galbraith 
et al. 2019, Mola et al. 2020b). However, direct mortality to 
queens and colonies also needs to be considered, especially 
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for species of conservation concern or in areas in which spe-
cies are unlikely to be adapted to frequent or high-severity 
fires. Changes in forest structure may negatively affect the 
availability or suitability of nesting and overwintering sub-
strates, although this is merely speculative as no research 
has been conducted on this to date. Understanding how past 
and continued changes in forest conditions affect foraging, 
nesting, and overwintering opportunities is critical, because 
we may overlook the role of forests in bumble bee life history 
if these conditions are sufficiently altered.

Incorporating forests into bumble bee monitoring 
and restoration
There has been a lack of emphasis on forest habitats for 
bumble bees within monitoring and restoration efforts. For 
the reasons outlined above, this likely limits the effectiveness 
of our conservation efforts. However, by explicitly incorpo-
rating forests into monitoring and restoration efforts we can 
further understand the role of forests in bumble bee biology 
and improve these habitats to support populations.

Several governmental and community science monitor-
ing programs exist to attempt to locate bumble bees, often 
with a focus on rare or declining species. These efforts have 
proven critical in trends and locations of rare bumble bees 
(MacPhail et  al. 2019). Some efforts are passive, such as 
iNaturalist or BeeSpotter, whose users upload their observa-
tions as species are encountered. Others are more directed 
with explicit sampling protocols. For example, the Nebraska 
Bumble Bee Atlas project encourages community scientists 
to survey for bumble bees by “survey[ing] for bumble bees 
at least twice between June and September” (www.nebraska-
bumblebeeatlas.org/requirements-145172.html). The timing 
of these surveys is likely to miss most queens. Similarly, 
US Fish and Wildlife Service protocols to survey for the 
endangered rusty-patched bumble bee (Bombus affinis) 
intentionally avoid queens, thereby reducing observations 
within early season habitats such as forest canopies and 
understories (box 1). Of course, efforts such as this yield 
tremendous value for detecting species presence or persis-
tence through time but may paint an incomplete picture of 
the importance of different habitat types to species by focus-
ing predominantly on peak flight season. Given the lower 
numerical abundance of queens and early worker cohorts, 
and the difficulty of locating nests or overwintering queens, 
detectability of bumble bees within forests may be lower as 
well (Liczner and Colla 2019, Graves et al. 2020, Pugesek and 
Crone 2021). However, low numerical abundance should 
not be confused with low demographic importance, because 
these earliest individuals are key to colony establishment 
and success even long after the initial colony phases (Carvell 
et  al. 2017, Woodard et  al. 2019). Future monitoring and 
research efforts to explicitly include forests in search efforts 
along with a focus on early season surveys could greatly 
enhance our understanding of bumble bee habitat use.

Restoration programs or pollinator habitat creation 
efforts follow a similar pattern, with a strong focus on 

midsummer flowering resources (Dicks et al. 2015, Requier 
and Leonhardt 2020). Although many pollinator planting 
guides (examples at http://millionpollinatorgardens.org/
resources) encourage the availability of floral resources 
all season long or encourage the use of trees or shrubs, 
this is generally not the focus of public-facing materials. 
Although pollinator plantings clearly increase peak season 
resources (Wood et al. 2018), greater consideration needs 
to be placed on nesting and overwintering habitat as well 
as resource availability during the tails of the season. The 
most cost-effective way to achieve this may be through the 
management and preservation of forested areas (Bentrup 
et al. 2019). Forest restoration is a costly and lengthy pro-
cess, so protection of existing forests and restoration efforts 
targeted at reducing canopy crowding or the impacts of 
overbrowsing may be even more cost-effective means of 
increasing the services that forests provide to bumble bee 
conservation.

Promisingly, the management of forests for bumble bee 
populations is synergistic with other wildlife management 
goals and is often an unintended effect of other efforts 
(Williams 2011, Hanula et  al. 2016). For example, in one 
study, forests that were managed for the red-cockaded 
woodpecker were also the most favorable long-term habitat 
for bees (Hanula et al. 2015). Similarly, management aimed 
at opening forest canopies to control pests and disease 
(Fettig et  al. 2007, Simler-Williamson et  al. 2019), is also 
likely to benefit bumble bees because favorable conditions 
for flowering are often found in mature forests with canopy 
gaps (Proesmans et  al. 2019). However, changes in canopy 
cover from management activities can also affect forest floor 
temperatures, snowpack accumulation, and water infiltra-
tion and may influence the suitability of overwintering sub-
strates (Varhola et al. 2010, Simler-Williamson et al. 2019), 
but this is yet to be studied for bumble bees or arthropods 
broadly and the directionality of the effects is unknown. 
Forest management efforts such as burning also seem com-
patible with bumble bee conservation goals as the effects 
of fire on bumble bees generally remains positive across a 
variety of habitats and species (reviewed in Carbone et  al. 
2019). Hedgerows, often containing woody plant species, 
have also been a mainstay of pollinator restoration efforts 
(Hannon and Sisk 2009). Forest edge plants can be favor-
able forage and may also serve multiple purposes in creat-
ing physical structure as well as providing protection from 
browsing mammals. For example, Bombus dahlbomii queens 
forage on Chilean box thorn (Vestia foetida) which is a nox-
ious plant that can poison browsing mammals and so may 
provide protected forage (Polidori and Nieves-Aldrey 2015). 
Creative opportunities for managing habitat for bees may 
exist that make these efforts compatible with broader forest 
management goals.

Future research
There are many avenues of future research on the relation-
ship between bumble bees and forests that are likely to be 
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Box 1. The potential of forests in conservation of the endangered rusty patched bumble bee (Bombus affinis).

In 2017, the rusty patched bumble bee (Bombus affinis) became the first bumble bee listed under the Endangered Species Act in the 
United States. Bombus affinis was once fairly widespread in North America but has suffered population declines and range contraction 
in the past few decades (Giles and Ascher 2006, Colla et al. 2012, Williams et al. 2014, USFWS 2019). As a sort of conservation flagship 
species for bees more generally, the development of this species’ recovery plan presents an opportunity to “get it right” from the start 
and apply lessons learned as a model for other pollinator species that face similar threats.

Current conservation efforts by US Fish and Wildlife Service (USFWS), state, and local monitoring predominantly focus on mid-
summer populations. For example, USFWS surveys “must be conducted between early June and mid-August, for the highest 
detection probability and to reduce potential impacts to B. affinis queens” (www.fws.gov/midwest/endangered/insects/rpbb/pdf/
Survey_Protocols_RPBB_12April2019.pdf). Although this is a laudable goal to avoid negatively affecting queen nest establishment, it 
also means information on spring queens and early workers is underreported. Intentionally avoiding surveys during these times of the 
year leaves us without data-driven management actions and may be undervaluing the importance of woody land covers.
Earlier natural history surveys suggest B. affinis queens use a range of woody and nonwoody species early in the season. Fye and 
Medler (1954) document B. affinis queens using several fruit trees such as Pyrus and Prunus species as well as early flowering shrubs 
such as Salix and Lonicera. In a similar investigation, Macior (1968) documented 156 B. affinis queens foraging with more than half 
of them captured from Berberis, Pyrus, and Lonicera. In contrast, Wood and colleagues (2019) found only 14% of pollen species from 
museum specimens of B. affinis were from woody plant species. However, these samples had a median date of August 6th, which is 
relatively late in the flight season of B. affinis (Mola et al. 2021).
To extend on prior understanding and make use of limited data, we examined records compiled originally for Bumble Bees of North America 
(Williams et al. 2014) and updated annually by Dr. Leif Richardson to understand the potential importance of forests for this species recovery.
We found records of spring and early summer queens (April–June) foraging on 13 plant genera, of which 10 were associated with forest 
habitat (figure 1a). Two species of forest-associated flowering plants (Dicentra cucullaria, Mertensia virginica) account for nearly half of 
the observations (figure 1a) and are known to be especially early blooming (Mola et al. 2021). In contrast, gynes foraging between July 
and September were found on nine floral genera of which only two are primarily associated with forests, suggesting the importance of 
forests as forage habitat declines as the season progresses (figure 1b).

Figure 1. Landcover and floral associations of Bombus affinis spring foundresses (panels (A) and (C)) and gynes 
(panels (B) and (D)). (A) Tally of landcover types within which each record of B. affinis spring foundresses was 
collected within the study region. (B) Tally of landcover types for B. affinis gynes (queen records after day of year 
150). (C) Tally of floral species identified from photos of B. affinis foundresses. (D) Tally of floral species identified 
from photos of B. affinis gynes. Forest-associated plant species and land covers are colored green.

1234-1248-biab121_COW.indd   1242 16-11-2021   08:17:22 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article/71/12/1234/6427255 by guest on 01 D

ecem
ber 2021



Overview Articles

https://academic.oup.com/bioscience  December 2021 / Vol. 71 No. 12 • BioScience   1243   

fruitful (box 2). Although many studies demonstrate a cor-
relation between bumble bees and surrounding forest cover, 
few set out with this intention in mind. Future studies seek-
ing to understand exactly why these correlations arise, either 
because of nesting, overwintering, or foraging habitat, across 
a variety of forest types could help land managers incorpo-
rate forests and woody habitats in species plans thoughtfully.

There is a pressing need to understand how changing 
conditions within forests from the threats discussed above 
are likely to affect bumble bees in the future and how man-
agement activities intended to counteract those threats will 
affect bumble bees. Of significant importance is likely to be 
the role of forests as thermal refugia under climate warm-
ing and understanding if, for example, species more reliant 
on open habitats may be more susceptible to the effects of 
warming as forests may offer refuge from heat waves and 
extreme weather events. Finally, perhaps underlying all 
these research needs, is greater capacity to study the role of 
forests in bumble bee biology. We argue above that our lack 
of understanding often comes from the difficulty of detect-
ing bumble bees within forests (i.e., visual blockage, canopy 
foraging, time of year). Efforts to better coordinate commu-
nity scientists, improve detection methods, and overcome 
the difficulty of identifying nesting and overwintering sites 
are all needed to improve our ability to study bumble bees 
within forested habitats.

Finally, although we review studies conducted in a wide 
range of forest types, there is also a strong bias toward 
research in temperate deciduous forests, predominantly 
in eastern North America, Europe, and Japan. A notable 
species lacking from our discussion is the tropical lowland 
rainforest specialist B. transversalis, which lives its entire life 
under deep canopy and makes use of twigs and leaves in its 
nest construction (Olesen 1989). Although it is an outlier 
in bumble bee life history, learning more about that species’ 
origins and behaviors may reveal general patterns. Broadly, 
it remains to be seen whether the associations between 
bumble bees and woody habitats described in the present 

article are relevant to forest types, such as tropical montane 
forests, that are both understudied and important habitats 
for bumble bees.

Conclusions
In this article, we focused on the value of forests for ful-
filling habitat requirements for bumble bees. However, it 
is important to note that these factors are not necessarily 
restricted to forests but are likely most often found within 
forests. For instance, orchards and gardens can also offer 
similarly early resources as natural or seminatural forest 
habitats (Watson et  al. 2011, Nakamura and Kudo 2019, 
Nikkeshi et  al. 2019). As we show in the case study with 
B. affinis (box 1), developed lands can offer substantial 
foraging opportunities for bumble bees and other studies 
demonstrate urban habitats can be suitable landscapes 
(McFrederick and LeBuhn 2006, Glaum et al. 2017, Reeher 
et  al. 2020). In addition, nesting within anthropogenic 
habitats seems to be fairly common (Medler and Carney 
1963, Liczner and Colla 2019). Overall, we have demon-
strated that forests are often critical bumble bee habitat, 
but it may be possible that the benefits of forests are sub-
stitutable to some extent with other environments such as 
developed landcovers containing early season species or 
other types of early blooming natural habitats. We hope 
our perspective does not provide the idea that forests are 
required for bumble bees but instead that they offer a cost 
effective means to provide foraging, nesting, and overwin-
tering habitats that are compatible with conservation goals 
of other organisms (Williams 2011, Bentrup et  al. 2019) 
and may be overlooked in studies of bumble bee biology. A 
recurrent problem in bumble bee conservation is the lack 
of informed demographic models or an understanding of 
basic aspects of species biology (i.e., nesting and overwin-
tering). Increasing our capacity to incorporate forests into 
these efforts is likely to produce rich data sets that better 
inform conservation efforts and lead to the development of 
useful demographic models.

Box 1. Continued.

We also examined land cover associations of queen records to assess habitat associations of B. affinis. In total, we overlaid 139 records 
with USDA Cropland Data Layer (NASS 2019) and extracted the landcover type each record was collected in. Although developed 
land cover types were the primary habitat association (figure 1c and 1d), as was expected given the dominance of community science 
records, deciduous forests were the second most common landcover (figure 1c and 1d).

The associations described in the present article are preliminary but suggest that the relationship between forests and B. affinis warrants 
rigorous scientific assessment, particularly to inform the species recovery plan and targeted conservation efforts. It seems unlikely a 
loss of forest plants was a driving factor in the decline of B. affinis (Mola et al. 2021), especially with other forest-associated species 
such as B. vagans remaining stable within the range. However, foraging associations from historical studies and from contemporary 
community science observations suggest that early season forest plants may be important areas of focus for habitat management. In 
addition, it is likely that nesting and overwintering habitat for B. affinis is favorable within forested landscapes, as was evidenced from 
several community science and anecdotal observations. Although data is limited at this time, the available evidence suggests that for-
ests may play an important part in conservation and recovery planning for this endangered species.
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